Abstract

This is the first report on ultrahigh sensitive and selective electrochemical detection of nanomolar concentrations of dopamine (DA) in the presence of ascorbic acid (AA) at a modified electrode fabricated with a new functional nanocomposite, comprising of multi-walled carbon nanotube (MWNT) grafted silica network (silica NW) and gold nanoparticles (Au NPs) (MWNT-g-silica NW/Au NPs). The fabrication of MWNT-g-silica NW/Au NPs modified electrodes involves two steps: covalent functionaliztion of MWNT with silica NW and deposition of Au NP. Cyclic voltammetry and differential pulse voltammetry experiments were performed for the individual and simultaneous electrochemical detection of DA (in nanomolar concentrations) and AA. Differential pulse voltammograms at ITO/MWNT-g-silica NW/Au NPs modified electrode (ME) revealed that the current response is linear for DA in the concentration range of 0.1 nM-30 nM with a detection limit of 0.1 nM. This is the lowest detection limit reported for DA. A plausible mechanism is presented for the excellent performance of ITO/MWNT-g-silica NW/Au NPs-ME towards nanomolar detection of DA. The results revealed that MWNT, silica NW and Au NPs in ITO/MWNT-g-silica NW/Au NPs-ME synergistically contribute to the ultrasensitivity and selectivity for the electrochemical detection of nanomolar concentrations of DA in the presence of coexisting species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.