Abstract
A nanometric cutting device under high vacuum conditions in a scanning electron microscope (SEM) was developed. The performance, tool-sample positioning, and processing capacity of the nanometric cutting platform were studied. The proposed device can be used to realize a displacement of 7μm, with a closed-loop resolution of 0.6nm in both the cutting direction and the depth direction. Using a diamond cutting tool with an edge radius of 43nm formed by focused ion beam (FIB) processing, nanometric cutting experiments on monocrystalline silicon were performed on the developed cutting device under SEM online observation. Chips and machining results of different depths of cut were studied during the cutting process, and cutting depths of less than 10nm could be obtained with high repeatability. Moreover, the cutting speed was found to exhibit a strong relationship with the brittle–ductile transition depth on brittle material. The experimental results of taper cutting and sinusoidal cutting indicated that the developed device has the ability to perform multiple degrees of freedom (DOFs) cutting and to study nanoscale material removal behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.