Abstract

Metallization layers of aluminum, gold, or copper are shown to be protected from interactions with silicon substrates by thin boron layers grown by chemical-vapor deposition (CVD) at 450 °C. A 3-nm-thick B-layer was studied in detail. It formed the p+-anode region of PureB diodes that have a metallurgic junction depth of zero on n-type Si. The metals were deposited by electron-beam-assisted physical vapor deposition (EBPVD) at room temperature and annealed at temperatures up to 500 °C. In all cases, the B-layer was an effective material barrier between the metal and Si, as verified by practically unchanged PureB diode I–V characteristics and microscopy inspections of the deposited layers. For this result, it was required that the Si surface be clean before B-deposition. Any Si surface contamination was otherwise seen to impede a complete B-coverage giving, sometimes Schottky-like, current increases. For Au, room-temperature interactions with the Si through such pinholes in the B-layer were excessive after the 500 °C anneal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.