Abstract

Optical coherence tomography (OCT) is a well-established method to retrieve three-dimensional, cross-sectional images of biological samples in a non-invasive way using near-infrared radiation. The axial resolution of OCT is in the order of the coherence length lc ∝ λ02/ΔλFWHM which depends on the central wavelength λ0 and the spectral width (FWHM) ΔλFWHM of a light source. OCT with broadband visible and near-infrared sources typically reaches axial (depth) resolutions in the order of a few micrometers [1]. The new method presented here takes advantage of the fact that the coherence length and therefore the axial resolution of OCT can be significantly reduced if broadband XUV and SXR radiation is used. The broadness of the usable XUV spectrum is limited by absorption edges of the sample materials. For instance, the silicon transmission window (30-99 eV) corresponds to a coherence length and therefore a possible axial resolution of about 12 nm, thus suggesting applications for semiconductor inspection. In the water window at 280-530 eV a coherence length as short as 3 nm can be achieved and highlights possible applications of XCT for life sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.