Abstract

The development of memristors operating at low switching voltages <50mVcan be very useful to avoid signal amplification in many types of circuits, such as those used in bioelectronic applications to interact with neurons and nerves. Here, it is reported that 400nm-thick films made of dalkyl-dithiophosphoric (DDP) modified copper nanoparticles (CuNPs) exhibit volatile threshold-type resistive switching (RS) at ultralow switching voltage of ≈4mV. The RS is observed in small nanocells with a lateral size of <50nm-2 , during hundreds of cycles, and with an ultralow variability. Atomistic calculations reveal that the switching mechanism is related to the modification of the Schottky barriers and insulator-to-metal transition when ionic movement is induced via external bias. The devices are also used to model integrate-and-fire neurons for spiking neural networks and it is concluded that circuits employing DDP-CuNPs consume around ten times less power than similar neurons implemented with a memristor that switches at 40mV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.