Abstract
HypothesisLangmuir-Blodgett (LB) technique allows the deposition of gold nanoparticles and nanoclusters (atomically precise nanoparticles below 2 nm in diameter) onto solid substrates with an unprecedented degree of control and high transfer ratios. Nanoclusters are expected to follow the crinkle folding mechanism, which promotes the formation of trilayers of nanoparticles but kinetically disfavors the formation of the fourth layer. ExperimentsLB films of Au38(SC2H4Ph)24 nanocluster were prepared at a range of surface pressures in the bilayer/trilayer regime and their internal structure was analyzed with X-ray Reflectivity (XRR) and Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS). Bimodal atomic force microscopy (AFM) imaging was used to quantify the elastic modulus, which can be correlated with the topography at the same point on the surface. FindingsNanocluster bilayers and trilayers exhibited the elastic moduli of ca. 1.2 GPa and 0.9 GPa respectively. Films transferred in the 20–25 mN/m surface pressure regime displayed a particular propensity to form highly vertically organized trilayers. Further compression resulted in disorganization of the layers. Crucially, the use of two cantilevers of contrasting stiffness for bimodal AFM measurements has demonstrated a new approach to quantify the mechanical properties of ultrathin films without the use of deconvolution algorithms to remove the substrate contribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.