Abstract

Carbon-based thin films possess unique and adjustable combination of properties such as high hardness and wear resistance, chemical resistance and good tribological performances. Among critical variables to tailor a-C film’s properties for specific application is the distribution of the carbon hybridization states (sp 1 , sp 2 and sp 3 bonds), the atomic H content, the content in dopants such as Si, F, N, B and O. Here we focus on: (i) a-C and hydrogenated amorphous carbon (a-C:H) films with a mixture of sp 2 and sp 3 bonding, highly sp 3 -boned material (ta-C) and sp 2 -bonded carbon, (ii) carbon nitride (CN x ) coatings and (iii) metal/amorphous carbon (a-C:M) composite films. The study is focused on the review of the nanomechanical properties and analysis of the nanoscratching processes at low loads to obtain quantitative analysis, the comparison of their elastic/plastic deformation response, and nanotribological behavior of the a-C, ta-C, a-C:H, CN x , and a-C:M films. For ta-C and a-C:M films new data are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.