Abstract

Pesticides have been widely used in agricultural and industrial production to prevent pests. So, sensing pesticides with high selectivity and sensitivity level plays a significant role in food safety management. Molecularly imprinted polymer (MIP) based sensors overcome the current restriction of traditional detection approaches and offer great potential for efficient, low-cost and low detection limit using smart miniaturized equipment. But some drawbacks could come from the lack of electrocatalytic activity and conductivity of MIPs that restrict their utilization in the sensing field. The integration of NPs with MIPs has opened new ways for rapid screening and monitoring of pesticide residues due to their excellent benefits in the designing of novel sensor chip. In this review, firstly we have highlighted and summarized the current research progresses of MIP-based sensors. Secondly, we provide an extensive overview on the MIPs modified nanomaterials for both experimental analysis and point-of-care testing of pesticides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.