Abstract

The increased prevalence of functionalized nanomaterials in a range of applications will inevitably lead to nanoparticle contamination of soil and groundwater. Here, we investigate how gold nanoparticles’ (AuNPs) shape and surface chemistry influence their retention in soil columns and stability in simulated groundwater. When AuNPs are eluted from soil columns with simulated groundwater, spherical particles are more strongly retained in the soil than the rod-shaped AuNPs, regardless of the surface chemistry (as determined by ICP-OES). In a deionized water eluent, however, the same AuNPs showed a retention profile dependent upon surface chemistry (positively charged AuNPs are strongly retained by soil, while negatively charged particles are quickly eluted). This change in retention behavior suggests that the spherical AuNPs may undergo a physiochemical transformation (likely aggregation) during the elution process which reduces their mobility. AuNP stability against aggregation in simulated groundwater was...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.