Abstract

Organic light emitting material direct writing is demonstrated based on nanomaterial enabled laser transfer. Through utilization of proper nanoparticle size and type and the laser wavelength choice, a single laser pulse could transfer well-defined and arbitrarily shaped tris-(8-hydroxyquinoline)Al patterns ranging from several microns to millimeter size. The unique properties of nanomaterials allow laser induced forward transfer at low laser energy (0.05 J/cm2) while maintaining good fluorescence. The technique may be well suited for the mass production of temperature sensitive organic light emitting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.