Abstract
The authors report the nanomachining of sub-20-nm wide doubly clamped silicon carbon nitride resonators using low keV electron beam lithography with polymethyl methacrylate resist and cold development. Methodologies are developed for precisely controlling the resonator widths in the ultranarrow regime of 11–20 nm. Resonators with lengths of 1–20 μm and widths of 16–280 nm are characterized at room temperature in vacuum using piezoelectric actuation and optical interferometry. Clamping and surface losses are identified as the dominant energy loss mechanisms for a range of resonator widths. The resonator clamping points are optimized using an original electron beam lithography simulator. Various alternative clamping point designs are also modeled and fabricated in order to reduce the clamping losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.