Abstract
The possibility of temporally stable nanolocalized charging of thin SiO2 layers with embedded silicon nanocrystals (nc-Si) is demonstrated. The local charge writing and reading in SiO2 layers were performed using the electrostatic force microscopy (EFM) technique under the probe of an atomic force microscope. The nc-Si inclusions in a 12-nm-thick SiO2 layer were obtained using the implantation of low-energy (1 keV) Si+ ions, followed by annealing in a nitrogen atmosphere containing 1.5% oxygen. This regime of nc-Si formation significantly improved the structure of nanocrystalline inclusions, which ensured the charge localization on a record level and retention for a prolonged time: the diameter of charged regions in SiO2 layers with nc-Si inclusions did not exceed 35 nm, while the charge storage time reached tens of hours. The localized EFM charging can be used as a basis of the charge nanolithography on oxide layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.