Abstract

ABSTRACTThe deformation behavior of both ion-implanted and deposited amorphous Si (a-Si) films has been studied using spherical nanoindentation, followed by analysis using Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). Indentation was carried out on both unannealed a-Si films (the so-called unrelaxed state) and in ion implanted films that were annealed to 450°C to fully relax the amorphous film. The dominant mode of deformation in unrelaxed films was via plastic flow of the amorphous phase rather than phase transformation, with measured hardness being typically 75–85% of that of crystalline Si. In contrast, deformation via phase transformation was clearly observed in the relaxed state of ion implanted a-Si, with the load-unload curves displaying characteristic discontinuities and Raman and XTEM indicating the presence of high-pressure crystalline phases Si-III and Si-XII following pressure release. In such cases the measured hardness was within 5% of that of the crystalline phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.