Abstract

Nanomechanical properties of amorphous hydrogenated carbon thin films are performed by nanoindentation technique. The amorphous hydrogenated carbon films are produced on silicon substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-MPCVD). The effect of negative bias voltage on amorphous hydrogenated carbon films is examined by Raman spectroscopy and the results showed that the intensity ratio of D-peak to G-peak ( I D/ I G) of amorphous hydrogenated carbon films at various bias voltages, increased as the bias voltage increased. The results also showed that Young’s modulus and hardness also increased as the bias voltage increased. In addition, Young’s modulus and hardness both decreased as the indentation depth increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call