Abstract

The success of dental implants depends on osseointegration can be compromised by well-known related adverse biological processes, such as infection and diabetes. Previously, nanohydroxyapatite-coated titanium surfaces (nHA_DAE) have been shown to contain properties that promote osteogenesis by enhancing osteoblast differentiation. In addition, it was hypothesized to drive angiogenesis in high-glucose microenvironments, mimicking diabetes mellitus (DM). On the other hand, the null hypothesis would be confirmed if no effect was observed in endothelial cells (ECs). Titanium discs presenting the differential surfaces were previously incubated in an FBS-free cell culture medium for up to 24 h, which was, thereafter, supplemented with 30.5 mM of glucose to expose human umbilical vein endothelial cells (HUVECs, ECs) for 72 h. They were then harvested, and the sample was processed to provide molecular activity of specific genes related to EC survival and activity by using qPCR, and the conditioned medium by ECs was used to evaluate the activity of matrix metalloproteinases (MMPs). Our data guaranteed better performance of this nanotechnology-involved titanium surface to this end once the adhesion and survival characteristics were ameliorated by promoting a higher involvement of β1-Integrin (~1.5-fold changes), Focal Adhesion Kinases (FAK; ~1.5-fold changes) and SRC (~2-fold changes) genes. This signaling pathway culminated with the cofilin involvement (~1.5-fold changes), which guaranteed cytoskeleton rearrangement. Furthermore, nHA_DAE triggered signaling that was able to drive the proliferation of endothelial cells once the cyclin-dependent kinase gene was higher in response to it, while the P15 gene was significantly down-regulated with an impact on the statement of angiogenesis. Altogether, our data show that a nanohydroxyapatite-coated titanium surface ameliorates the EC performance in a high-glucose model in vitro, suggesting its potential application in DM patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.