Abstract

Nanografting, an atomic force microscopy (AFM) based nanolithography technique, is becoming a popular method for patterning self-assembled monolayers (SAMs). In this technique, a nanoscale patch of a thiol-on-gold SAM is exchanged with a different thiol by the action of an AFM tip operated in contact mode at high load. The results are then imaged in topographic or lateral force microscopy again at low values of the load. One of the problems of contact mode nanografting is that monolayers of large molecules such as proteins are likely to be deformed, damaged, or even removed from the surface by contact mode imaging even when small loads are used. Furthermore, we need to note that the stiffness of the cantilevers used in contact mode is different than that of the cantilevers used in tapping mode and that tip changing in the course of an experiment can be quite inconvenient. Here, we show that a monolayer on a gold substrate can be nanografted using tapping mode AFM (also referred to as amplitude modulation AFM) rather than the commonly used contact mode. While the grafting parameters are somewhat trickier to choose, the results demonstrate that nanografting in tapping mode can make patches of the same quality as those made by contact mode, therefore allowing for gentle imaging of the grafted molecules and the whole SAM without changing the microscope tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.