Abstract

Atherosclerosis, cholesterol-driven plaque formation in arteries, is a complex multicellular disease which is a leading cause of vascular diseases. During the progression of atherosclerosis, the autophagic function is impaired, resulting in lipid accumulation-mediated foam cell formation. The stimulation of autophagy is crucial for the recovery of cellular recycling process. One of the potential autophagy inducers is trehalose, a naturally occurring non-reducing disaccharide. However, trehalose has poor bioavailability due to its hydrophilic nature which results in poor penetration through cell membranes. To enhance its bioavailability, we developed trehalose-releasing nanogels (TNG) for the treatment of atherosclerosis. The nanogels were fabricated through copolymerization of 6-O-acryloyl-trehalose with the selected acrylamide-type monomers affording a high trehalose conjugation (~ 58%, w/w). TNG showed a relatively small hydrodynamic diameter (dH, 67 nm) and a uniform spherical shape and were characterized by negative ζ potential (-18 mV). Thanks to the trehalose-rich content, TNG demonstrated excellent colloidal stability in biological media containing serum and were non-hemolytic to red blood cells. In vitro study confirmed that TNG could stimulate autophagy in foam cells and enhance lipid efflux and in vivo study in ApoE−/− mice indicated a significant reduction in atherosclerotic plaques, while increasing autophagic markers. In conclusion, TNG hold great promise as a trehalose delivery system to restore impaired autophagy-mediated lipid efflux in atherosclerosis and subsequently reduce atherosclerotic plaques.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call