Abstract

Generally, silk fibroin nanoparticles (SFNPs) are great candidates to deliver drugs or other bioactive substances in vivo. However, their further applications are largely limited by the low colloidal stability of SFNPs, as they tend to aggregate in biological media. To address this issue, SFNP composite materials with a core-shell structure (CS-SFNPs) were fabricated by coating SFNPs with four different selected cationic polymers, glycol chitosan, N,N,N-trimethyl chitosan, polyethylenimine, and PEGylated polyethylenimine, through electrostatic interaction. According to the DLS and NTA results, compared with the bare SFNPs, the CS-SFNPs showed much higher colloidal stability in biological media. When treated with human cervical carcinoma (HeLa) cells, the CS-SFNPs were efficiently internalized and accumulated in lysosome; and when loaded with an anticancer drug, DOX, the CS-SFNPs also showed higher cytotoxicity against HeLa cells. Our results suggest that the fabricated CS-SFNPs with desirable colloidal stability in biological media have the potential to be employed as drug carriers for the anticancer drug delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.