Abstract

The aim of this article is to propose a novel type of a nanofluid that contains both nanoparticles and motile (oxytactic) microorganisms. The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing, and anticipated improved stability of the nanofluid. In order to understand the behavior of such a suspension at the fundamental level, this article investigates its stability when it occupies a shallow horizontal layer. The oscillatory mode of nanofluid bioconvection may be induced by the interaction of three competing agencies: oxytactic microorganisms, heating or cooling from the bottom, and top or bottom-heavy nanoparticle distribution. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms, and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. An approximate analytical solution of the eigenvalue problem is obtained using the Galerkin method. The obtained solution provides important physical insights into the behavior of this system; it also explains when the oscillatory mode of instability is possible in such system.

Highlights

  • The term “nanofluid” was coined by Choi in his seminal paper presented in 1995 at the ASME Winter Annual Meeting [1]

  • Nanofluids enhance the thermal performance of the base fluid; the utilization of the constructal theory makes it possible to design a nanofluid with the best microstructure and performance within a specified type of microstructures

  • For the situation when the suspension contains no microorganisms and no nanoparticles

Read more

Summary

Introduction

The term “nanofluid” was coined by Choi in his seminal paper presented in 1995 at the ASME Winter Annual Meeting [1]. It refers to a liquid containing a dispersion of submicronic solid particles (nanoparticles) with typical length on the order of 1-50 nm [2]. The unique properties of nanofluids include the impressive enhancement of thermal conductivity as well as overall heat transfer [3,4,5,6,7]. Nanofluids enhance the thermal performance of the base fluid; the utilization of the constructal theory makes it possible to design a nanofluid with the best microstructure and performance within a specified type of microstructures

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call