Abstract

Purpose This paper aims to study the magnetohydrodynamic (MHD)-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganism. Design/methodology/approach The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing and anticipated improved stability of the nanofluid. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. Findings It has been found that the Hartmann number suppresses the heat and mass transfer, while the cavity and magnetic field inclination angles characterize a non-monotonic behavior of the all considered parameters. A rise of the Hartmann number leads to a reduction of the influence rate of the magnetic field inclination angle. Originality/value The present results are original and new for the study of MHD-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call