Abstract
This paper proposes a continuous process for solvent exchange, a key unit operation for organic synthesis in pharmaceutical manufacturing. This process comprises a counter-current membrane cascade using organic solvent nanofiltration (OSN) membranes. The effect of process parameters, such as number of stages and flow rate ratio of replacing solvent to initial solvent, on solvent exchange performance are tested through simulations and experiments. Experimental results show 47.8%, 59.2%, and 75.3% solvent exchange for single-stage, two-stage and three-stage cascades, values which are close to the 50.0%, 66.6%, and 75.0% predicted by simulations. In general, the feasibility of OSN membrane cascades for continuous solvent exchange is demonstrated in this work.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have