Abstract
Nanofibrillated cellulose from eucalyptus pulp, produced by high-pressure homogenization, was used as cement partial replacement for cement paste at a content ranging from 0% to 0.5% by weight of cement. The effect of the content of nanofibrillated cellulose on porosity, thermal properties, compressive strength and degree of cement hydration was investigated. Results have shown an improvement in the compressive strength by more than 50% with 0.3 wt% of added nanofibrillated cellulose. The porosity was reduced by nanofibrillated cellulose addition, and the greatest result was achieved with mixture incorporating 0.3 wt% nanofibrillated cellulose. The coefficient of thermal expansion and the thermal conductivity measurements, relative to nanofibrillated cellulose-reinforced cement pastes, have pointed out the reinforcement effectiveness of nanofibrillated cellulose. The degree of cement hydration has increased with nanofibrillated cellulose content. This trend was confirmed by X-ray diffraction and Fourier Transform Infrared spectroscopy. These analyses have revealed that the presence of nanofibrillated cellulose promoted the hydration of cement, by producing more portlandite and calcium silicate gel, which is likely the main reason accounting for the strong enhancement in the compressive strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.