Abstract

The objective of this work was to introduce nanofibrillated cellulose (NFC) in the formulation of cooked emulsion-type sausages with the aim of assessing its feasibility to assume the role or compensate the lack of some conventional functional ingredients, such as polyphosphates, maize starch, and sodium caseinate. For this aim, sausages based on standard commercial formula (control) including all three ingredients and sausages containing 0.5% NFC instead of phosphates and starch (NFC-1) or instead of phosphates, starch, and sodium caseinate (NFC-2) were produced and characterized. In NFC-1 samples, 0.5% nanofibrillated cellulose succeeds in replacing 0.5% polyphosphates and 1% starch without significantly altering the composition, nor negatively affecting the fat and water retention properties, neither of the raw batter or the cooked sausages. However, less stable meat batters and sausages with significantly reduced water-holding capacity were obtained when 1.5% sodium caseinate, in addition to phosphates and starch, was also removed (NFC-2). Nevertheless, results were hopeful enough to encourage further optimization studies, using several NFC concentrations and/or cellulose with different nanofibrillation degrees, in order to clarify whether it is possible to successfully replace also non-meat proteins in cooked emulsion-type sausages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call