Abstract
Potentiometric sensors with nanostructural ion-selective membranes were prepared and tested. Electrospun nanofiber mats were applied in novel all-solid-state sensors, using carbon paper as an electronically conducting support. For the sake of simplicity, application of a solid contact layer was avoided, and redox-active impurities naturally present in the carbon paper have proven to be effective as ion-to-electron transducers. Application of a nanostructural ion-selective membrane requires an innovative approach to combine the receptor layer with the support. The nanofiber mat portion was fused with carbon paper in a hot-melt process. Applying temperature close to 120 °C for a short time (3 s) allowed binding the nanostructural ion-selective membrane with carbon paper, without significant changes in the nanofiber structure. This process was conveniently performed together with the lamination of the carbon paper support. The thus obtained, potentially disposable sensors were characterized as exhibiting highly reproducible potential readings in time as well as between sensors belonging to the same batch. The benefits of the application of nanostructural ion-selective membranes include shorter equilibration time, lower detection limit, and significantly lower material consumption. However, the nanostructural membrane is characterized by a higher electrical resistance, which is attributed to higher porosity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have