Abstract

Ceramide molecules in water-based solutions readily attract each other to form molecular crystals, which seriously hampers to diversify their formulations. This paper describes a facile method that allows fabrication of stable ceramide emulsions through an effective molecular association with a lipid having an asymmetric molecular geometry. The lipid considered in this study is mannosylerythritol lipid (MEL). MEL is specialized in having a unique molecular structure containing sugar alcohol erythritol as a hydrophilic part and two alkyl chains with different number of carbons as hydrophobic moieties. Our particular interest has been focused on experimentally demonstrating how MEL interacts with pseudo-ceramide molecules by observing phase properties, emulsion morphology, and suspension stability. The pseudo-ceramide emulsions prepared with MEL show remarkably improved dispersion stability without either formation of molecular crystals or changes in particle sizes even after storing them for a long time. This suggests that MEL readily associates with the pseudo-ceramide due to the hydrophobic interaction, while it makes a break in the continuity of the molecular assembly of the pseudo-ceramide molecules themselves due to the geometric hindrance coming from MEL's asymmetric molecular structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call