Abstract

Membrane proteins tend to be difficult to study since they need to be integrated into a lipid bilayer membrane to function properly. This study presents a method to synthesize a macroscopically large and freely transportable membrane with integrated membrane proteins which is useful for studying membrane proteins and protein complexes in isolation. The method could serve as a blueprint for the production of larger quantities of functionalised membranes for integration into technical devices similar to the MinION DNA sequencer. It is possible to self-assemble larger biological membranes on solid surfaces. However, they cannot be removed from their solid support without destroying them. In transportable form, self-assembled membranes are limited to sizes of about 17 nm in nanodiscs. Here we electrospray a series of molecular layers onto the liquid surface of a buffer solution which creates a flat, liquid environment on the surface that directs the self-assembly of the membrane. This method enables us to experimentally control the membrane composition and to succeed in producing large membranes with integrated OmpG, a transmembrane pore protein. The technique is compatible with the assembly of membrane based protein complexes. Listeriolysin O and pneumolysin efficiently assemble into non-covalent membrane pore complexes of approximately 30 units or more within the surface layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.