Abstract

It is generally accepted that the early damage to genes or cells by ionising radiation starts with the early damage to segments of the DNA, at least, to the greater part. This damage is the result of the spatial distribution of inelastic interactions of single ionising particles within the DNA or in its neighbourhood and is, in consequence, determined by the stochastics of particle interactions in volumes a few nanometre in size. Due to the latter fact radiation damage strongly depends on radiation quality and cannot be described satisfactorily in detail by macroscopic quantities like absorbed dose or linear energy transfer (LET). It can, however, be described approximately by the probability distribution of ionisation cluster-size formation in nanometric target volumes of liquid water (nanodosimetry). One aim of nanodosimetry is, therefore, to measure the radiation induced frequency distribution of ionisation cluster-size formation in liquid water, as a substitute for sub-cellular material, in volumes which are comparable in size with those of the most probable radio-sensitive volumes of biological systems. After a short description of the main aspects of cluster-size formation by ionising particles, an overview is given about the measuring principles applied in present-day nanodosimetric measurements. Afterwards, physical principles are discussed which can be used to convert ionisation cluster-size distributions measured in gases into those caused by ionising radiation in liquid water. In a final section, the probability distribution of ionisation cluster-size formation in liquid water is discussed from the point of view of damage formation to segments of the DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call