Abstract

The early damage to genes and cells due to ionizing radiation is initiated by the overlay of the track structure of charged particles and of the structure of radiosensitive sub-cellular volumes. As a result of this overlay, a specified number of ionizations (the ionization cluster size) is formed per primary particle. Therefore, one of the aims of nanodosimetry is to determine ionization cluster-size distributions in nanometric volumes of liquid water, as a substitute to sub-cellular structures. After a short description of the main aspects of cluster-size formation by charged particles, an overview of the advanced measuring techniques that use millimetric target volumes filled with a low-pressure gas to simulate nanometric target volumes at unit density is given. Afterwards, physical principles are discussed which are applicable to convert ionization cluster-size distributions measured in gases into those for liquid water. Finally, a tentative possibility is proposed of how to relate parameters derived from cluster-size distributions in liquid water to parameters derived from radiation-induced radiobiological experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.