Abstract

A comprehensive study, with a combination of diverse analytical techniques, was performed to investigate nanodomain formation and distribution in gadolinium-doped ceria. It is illustrated that the nanodomain formation, originating from the aggregation and segregation of dopant cations together with associated charge-compensating oxygen vacancies, is ubiquitous throughout doped ceria. The formation of nanodomains is not limited to bulk areas as previously reported but exists at grain boundaries as well. With enhanced ordering level, such nanodomains formed at grain boundaries will decrease the ionic conductivity as a result of hindered the mobility of oxygen vacancies in doped ceria. Particularly, the nanodomains formed at grain boundaries, with strong defect interactions due to enrichment of dopants and ordered oxygen vacancies, are suggested to be another possible reason for the grain-boundary resistance, other than the widely accepted space-charge layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call