Abstract

Microstructures and segregations of dopants and associated oxygen vacancies in gadolinium-doped ceria (GDC) have been characterized by high-resolution transmission electron microscopy (HRTEM) and scanning TEM (STEM). Diffuse scattering was detected in 25 at. % GDC (25GDC) in comparison to 10GDC, which is ascribed to nanodomain formation in 25GDC. HRTEM, dark-field, and STEM Z-contrast imaging investigations all provide direct evidence for dopant segregation in doped ceria. It is illustrated that dopant cations cannot only segregate in grain interior forming larger nanodomains but also at grain boundary forming smaller ones. Detailed analyses about nanodomain formation and related dopant segregation behaviors are then elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.