Abstract

Nanodiamonds (NDs) have potential as platform materials for biological and biomedical applications depending on the combinatorial complex designs. Bimetallic nanocomposites with ND and gold nanorods (AuNRs) were synthesized and obtained at tunable UV absorption wavelengths by controlling the aspect ratio of AuNR. The nanodiamond/AuNR nanocomposites (NDAuNR) with fine tuning ultraviolet/visible/near-infrared (UV–vis-NIR) extinction were prepared using a cetyltrimethylammonium bromide (CTAB)-surfactant-based seedless growth method. NDAuNRs varied with UV absorption wavelengths and aspect ratios, providing the surface-enhanced Raman scattering (SERS) effect. Compared to AuNR/800nm with the same UV absorption wavelength, NDAuNR/800nm showed 12.1% and 9.8% higher SERS intensity ratios of I1620/I520 and I420/I520, respectively, for methylene blue of concentration 10−5M. The enhanced SERS intensity of NDAuNR/800nm indicates that electron mobility was facilitated at the interface between ND and AuNRs, and a larger contact area owing to a larger aspect ratio resulted in a higher SERS effect. The study demonstrated that NDAuNR nanocomposites enhanced the photo-responsive reactivity in SERS, resulting in potentially promising biomedical applications in sensor, imaging, and photothermal therapy. NDs provide platform substances to magnify gold resonance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.