Abstract
Using a method of collecting nanoparticles at a water/hexane interface in a close-packed monolayer film and transferring such films onto a solid substrate, three-dimensional multilayer films of nanoparticles were formed. The packed nanoparticles were gold nanospheres (NS) with a 26 nm diameter or gold nanorods (NR) with a 31 nm diameter and 74 nm length. We investigated variations in the surface enhanced Raman scattering (SERS) intensities from such nanoparticle films as the layer compositions were changed. The films stacked with NR layers generated much higher SERS intensity than those of NS layers. The SERS intensities from both kinds of films increased as the number of layers were increased. However, when the NR layer and NS layer were stacked alternately, SERS intensity varied in a zigzag fashion. It was found that the structure of top layer plays a distinguishable role in generating strong SERS enhancement while the lower layers contribute to SERS with less dependency on structures. Interlayer coupling as well as intralayer coupling was considered in order to explain the observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.