Abstract

Poly(phenylene isophthalamide) (PA) membranes modified with detonation nanodiamond (ND) particles have been prepared by solid-phase dispersion of powders of the components. The transport properties of dense film membranes containing up to 5 wt % ND have been studied in the methanol and methyl acetate mass transfer processes using the sorption and pervaporation methods. It has been shown that the sorption-diffusion characteristics of the membranes are improved owing to the incorporation of ND particles in the PA matrix. The experimental data on the pervaporation of a methanol-methyl acetate mixture have been used to calculate the classical parameters flux and separation factor and determine permeability and selectivity, characteristic driving force-normalized properties of the test membrane-penetrant system. The highest flux and separation factor values have been obtained for a membrane containing 3 wt % ND. It has been found that the characteristic properties of the membrane-penetrant system facilitate selective mass transport of a methanol-methyl acetate mixture using PA/ND membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.