Abstract
Synthesizing stable Au and Ag nanocrystals of narrow size distribution from metal-N-heterocyclic carbene (NHC) complexes remains a challenge, particularly in the case of Ag and when NHC ligands with no surfactant-like properties are used. The formation of nanocrystals by one-phase reduction of metal-NHCs (metal = Au, Ag) bearing common NHC ligands, namely 1,3-diethylbenzimidazol-2-ylidene (L(1)), 1,3-bis(mesityl)imidazol-2-ylidene (L(2)), and 1,3-bis(2,6-(i)Pr2C6H3)imidazol-2-ylidene (L(3)), is presented herein. We show that both Au and Ag nanocrystals displaying narrow size distribution can be formed by reduction with amine-boranes. The efficiency of the process and the average size and size distribution of the nanocrystals markedly depend on the nature of the metal and NHC ligand, on the sequence in the reactant addition (i.e., presence or absence of thiol during the reduction step), and on the presence or absence of oxygen. Dodecanethiol was introduced to produce stable nanocrystals associated with narrow size distributions. A specific reaction is observed with Ag-NHCs in the presence of thiols whereas Au-NHCs remain unchanged. Therefore, different organometallic species are involved in the reduction step to produce the seeds. This can be correlated to the lack of effect of NHCs on Ag nanocrystal size. In contrast, alteration of Au nanocrystal average size can be achieved with a NHC ligand of great steric bulk (L(3)). This demonstrates that a well-defined route for a given metal cannot be extended to another metal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have