Abstract

Spark plasma sintering (SPS) is evolving as an attractive process for the processing of multi-component Fe-based bulk amorphous alloys and their in-situ nanocomposites with controlled primary nanocrystallization. Extended Q-range small angle neutron scattering (EQ-SANS) analysis, complemented by x-ray diffraction and transmission electron microscopy, was performed to characterize nanocrystallization behavior of SPS sintered Fe-based bulk amorphous alloys. The SANS experiments show significant scattering for the samples sintered in the supercooled region indicating local structural/compositional changes associated with the profuse nucleation of nanoclusters (∼4 nm). For the samples spark plasma sintered near and above crystallization temperature (>653 °C), the SANS data show the formation of interference maximum indicating the formation and growth of (Fe,Cr)23C6 crystallites. The SANS data also indicate the evolution of bimodal crystallite distribution at higher sintering temperatures (above Tx1). The growth of primary nanocrystallites results in impingement of concentration gradient fields (soft impingement effect), leading to non-random nucleation of crystallites near the primary crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.