Abstract
A nanostructured surface layer was formed in Fe-30 wt pct Ni alloy by surface mechanical attrition treatment (SMAT). The microstructure of the surface layer after SMAT was investigated using optical microscopy, X-ray diffraction, and transmission electron microscopy. The analysis shows that the nanocrystallization process at the surface layer starts from dislocation tangles, dislocation cells, and subgrains to highly misoriented grains in both original austenite and martensite phases induced by strain from SMAT. The magnetic properties were measured for SMAT Fe-30 wt pct Ni alloy. The saturation magnetization (M s ) and coercivity (H c ) of the nanostructured surface layers increase significantly compared to the coarse grains sample prior to SMAT. The increase of M s for SMAT Fe-30 wt pct Ni alloy was attributed to the change of lattice structure resulting from strain-induced martensitic transformation. Meanwhile, H c was further increased from residual microstress and superfined grains. These were verified by experiments on SMAT pure Ni and Co metal as well as liquid nitrogen-quenched Fe-30 wt pct Ni alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.