Abstract

Interests in magnesium alloys increase as eco-material for its lightweight, and many investigations have been carried out on the development of manufacturing processes and alloy development. In 2001, Mg97Zn1Y2 (at%) alloy with a tensile yield strength of 610 MPa and an elongation of more than 5 % has been developed by rapidly solidified powder metallurgy (RS P/M) processing. The developed alloy was characterized by a novel phase with long period stacking ordered (LPSO) structure. Recently, we have investigated new compositions for LPSO RS P/M Mg-Zn-Y-X alloys in order to improve the corrosion resistance of the RS P/M Mg97Zn1Y2 alloy with maintaining the superior mechanical properties. Consequently, we have developed a RS P/M Mg96.7Zn0.85Y2Al0.45 alloy with high strength and high corrosion resistance. The RS P/M Mg96.7Zn0.85Y2Al0.45 alloy contained the LPSO phase and exhibited a tensile strength of 525 MPa, an elongation of 9 % and a fatigue strength of 325 MPa, which were similar to those of the RS P/M Mg97Zn1Y2 alloy. However, the corrosion resistance of the RS P/M Mg96.7Zn0.85Y2Al0.45 alloy was 1.5 times that of the RS P/M Mg97Zn1Y2 alloy. The specific tensile yield strength, the specific fatigue strength and the corrosion resistance of the RS P/M Mg96.7Zn0.85Y2Al0.45 alloy were about 1.7 times, 1.8 times, and twice those of extra-super-duralumin (7075-T6 or 7075-T73), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call