Abstract

Polyethylene oxide (PEO) based polymer electrolytes are still the state of the art for commercial lithium-metal batteries (LMBs) despite their remaining challenges such as the limited ionic conductivity at ambient temperature. Accordingly, the realization of thin electrolyte membranes and, thus, higher conductance is even more important, but this requires a sufficiently high mechanical strength. Herein, the incorporation of nanocrystalline cellulose into PEO-based electrolyte membranes is investigated with a specific focus on the electrochemical properties and the compatibility with lithium-metal and LiFePO4-based electrodes. The excellent cycling stability of symmetric Li||Li cells, including the complete stripping of lithium from one electrode to the other, and Li||LiFePO4 cells renders this approach very promising for eventually yielding thin high-performance electrolyte membranes for LMBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.