Abstract

We have realized nanocrystal memories by using silicon quantum dots embedded in silicon dioxide. The Si dots with the size of few nanometers have been obtained by chemical vapor deposition on very thin tunnel oxides and subsequently coated with a deposited SiO2 control dielectric. A range of temperatures in which we can adequately control a nucleation process, that gives rise to nanocrystal densities of ∼3×1011 cm−2 with good uniformity on the wafer, has been defined. The memory effects are observed in metal-oxide-semiconductor capacitors or field effect transistors by significant and reversible flat band or threshold voltage shifts between written and erased states that can be achieved by applying gate voltages as low as 5 V. The program-erase window does not exhibit any change after 105 cycles on large area cells showing that the endurance of such a memory device which uses a thinner tunnel oxide is potentially much higher than that of standard nonvolatile memories. Moreover, good retention results are observed in spite of the low tunnel dielectric thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.