Abstract

Highly luminescent colloidally prepared HgTe nanocrystals (NCs) are used to fabricate microcavity light-emitting devices operating around 1.5μm. They consist of a Bragg interference mirror from standard optical materials deposited on glass substrates, an active layer embedding the nanocrystals, and a metallic top mirror. These devices give highly directional narrow single-mode emission with a beam divergence below 3° and a spectral width smaller by a factor of 8 than that of a NC reference sample. The emission wavelength can be tuned between 1.4 and 1.75μm by changing the cavity length and thus, the cavity finesse. The influence of the latter on output power and beam divergence is discussed. Furthermore, operation up to 75 °C is demonstrated without degradation of the NCs, which is promising for potential applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.