Abstract

Forming core–shell-structured phosphor particles is an effect way to improve the properties of the rare-earth-doped inorganic luminescent systems, as well as to achieve a reduction in the amount of expensive rare earth metal. Heterogeneous nucleation processing is a commonly used method to prepared core–shell-structured particles. A nanocomposite BaSO4/Y2O3:Eu3+ powder was prepared by coating BaSO4 submicrospheres with nano-Y2O3:Eu3+ particles via heterogeneous nucleation processing. Thermogravimetric analysis and differential scanning calorimetry (TGA/DSC) were utilized to reveal the mechanism of the homogenous precipitation reaction process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) were utilized to characterize the BaSO4/Y2O3:Eu3+ core–shell-structured phosphor particles. By controlling the hydrolysis of urea, BaSO4 particles are well coated with the shell of Y2O3:Eu3+, and the nucleation of coating materials is predominantly heterogeneous rather than homogeneous. Photoluminescence spectra were utilized as well. The BaSO4/Y2O3:Eu3+ particles show a red emission corresponding to 5D0–7F2 of Eu3+ under the excitation of ultraviolet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call