Abstract

Electron microscopy, x-ray diffraction analysis, and micro-and nanohardness measurements were used to investigate the interrelations between the fine structure and the variations in strength properties of nanostructured and nanocomposite Ti-Si-B-N coatings with high oxygen and carbon contents. It has been shown that under the conditions of low-temperature (T = 200°C) coating deposition, a two-level grain structure forms with {200} texture and grains 0.1–0.3 µm in size fragmented into subgrains 15–20 nm in size. As the silicon content is increased, textureless coatings with the crystal phase grain size less than 15 nm and high amorphous component or coatings of amorphous-crystalline structure are produced. At coating deposition temperatures of 400–450°C, a nanocomposite structure with a grain size d = 10–15 nm and no texture is observed. For all test compositions and conditions of coating production, a Ti 1−x Si x N crystal phase with the lattice parameter a = (0.416–0.420) ± 0.001 nm has been detected. For optimum coating compositions and synthesis conditions, the hardness is over 40–50 GPa. It has been supposed that superhardness can be attained with multiphase grain-boundary interlayers of thickness more than 1 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.