Abstract

The nuclear pore complex (NPC) employs the intrinsically disordered regions (IDRs) from a family of phenylalanine-glycine-rich nucleoporins (FG-Nups) to control nucleocytoplasmic transport. It has been a long-standing mystery how the IDR-mediated mass exchange can be rapid yet selective. Here, we use a computational microscope to show that nanocompartmentalization of IDR subdomains leads to a remarkably elaborate gating structure as programmed by the amino acid sequences. In particular, we reveal a heterogeneous permeability barrier that combines an inner ring barrier with two vestibular condensates. Throughout the NPC, we find a polarized electrostatic potential and a diffuse thermoreversible FG network featuring mosaic FG territories with low FG-FG pairing fraction. Our theoretical anatomy of the central transporter sheds light into the sequence-structure-function relationship of the FG-Nups and provides a picture of nucleocytoplasmic mass exchange that allows a reconciliation of transport efficiency and specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.