Abstract

We report a systematic study of small-angle x-ray scattering and Raman spectroscopy on hydrogenimplanted amorphous silicon (a-Si) and standard device-quality plasma-grown a-Si:H, both having a hydrogen concentration of 11 at. %. The modifications of short-range and medium-range structural order induced by annealing are investigated. We find that annealing causes the formation and growth of nanoscale H complexes in both materials. However, the volume content of the H nanoclusters is strongly influenced by the disorder in the original structure, remaining smaller by a factor of 3 in the a-Si:H with respect to the H-implanted sample. We discuss qualitative resemblances and quantitative differences of the structural evolution of H-implanted a-Si and a-Si:H in terms of H solubility and defect structure in a-Si. In addition, the study of a-Si implanted with H at different concentrations shows that the amount of H nanoclustering increases superlinearly with the concentration of H atoms exceeding solubility. @S0163-1829~98!00843-1#

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.