Abstract

Diversified SiCN fibers with gradient-SiC xN y phase in the interfacial regions between the major phases of carbon-rich SiC phase and Si3N4 phase were prepared via nanochannel diffusion-controlled nitridation of polycarbosilane fibers under different NH3 flow rates. The obtained fibers with excellent mechanical properties showed a different nanostructure and improved high-temperature behavior compared with polysilazane- and polysilylcarbodiimide-derived SiCN ceramics. The enhanced high-temperature properties could be contributed to the inhibition of carbothermal reduction of the Si3N4 phase by the gradient-SiC xN y phase in the interfacial region between the Si3N4 phase and carbon-rich SiC phase. Meanwhile, a suitable amount of interfacial SiC xN y phase as well as the fine distributed microstructure can be helpful to inhibit the high-temperature crystallization of both the SiC phase and Si3N4 phase. Additionally, a nanostructural model has been proposed to understand the effect of interfacial gradient-SiC xN y phase and compositional-dependent high-temperature behavior of obtained SiCN fibers. Our findings provide a novel strategy to prepare SiCN-based ceramic materials with excellent high-temperature stabilities, which we expect to possess great potential in structural and (multi)functional applications at high temperatures and under harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.