Abstract

A novel injectable bone cement was prepared using sol–gel derived borosilicate bioactive glass nanoparticles as a solid phase and sodium alginate solution as a liquid phase. The gelation reaction of the alginate was modulated by Ca2+ ions released from the borosilicate glass phase, which in turn greatly depended on the boron content of the borosilicate glass phase. Such a gelation reaction not only significantly enhanced the anti-washout property of the bone cements, but also allowed control of the setting, handling properties, and compressive strength of the composite bone cements. Consequently, bone cements with controllable performances can be developed by simply adjusting the B2O3/SiO2 ratio of the borosilicate glass phase. Borosilicate bioactive glass with 20–30 mol-% borate contents exhibit a short setting time, good compressive strength, injectability, and anti-washout properties. With controllable performances and excellent bioactivity, the borosilicate bioactive glass/sodium alginate (BSBG/SA) composite bone cements are highly attractive for bone filling and regeneration applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call