Abstract

Bacteriophages (phages) are widely explored as antimicrobials for treating infectious diseases due to their specificity and potency to infect and inhibit host bacteria. However, the application of phages to inhibit intracellular pathogens has been greatly restricted by inadequacy in cell entry and endosomal escape. Here, we describe the use of cationic polymers to selectively cap negatively charged phage head rather than positively charged tail by electrostatic interaction, resulting in charge-reversed phages with uninfluenced vitality. Given the positive surface charge and proton sponge effect of the nanocapping, capped phages are able to enter intestinal epithelial cells and subsequently escape from endosomes to lyse harbored pathogens. In a murine model of intestinal infection, oral ingestion of capped phages significantly reduces the translocation of pathogens to major organs, showing a remarkable inhibition efficacy. Our work proposes that simple synthetic nanocapping can manipulate phage bioactivity, offering a facile platform for preparing next-generation antimicrobials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call