Abstract

Dynamics of changes in fluorine atoms distribution through grown anodic oxide layer thickness and the effective surface charge on InAs crystals under such layers has been studied. Anodic oxidation was performed in alkaline electrolyte with fluorochemical additive component in galvanostatic mode at anode current densities 0.05 or 0.5 mA·cm−2. The layers thickness in boundes 32—51 nm varied by electrodes final voltage setting in range 15—25 V. The layer thickness and refractive index was measured by ellipsometric method, and distribution of fluorine atoms through thickness — by photoelectron−spectroscopy method, combined with ion etching. At the same time, based on grown layers there were produced MIS structures, and from calculation of theirs capacitance−voltage characteristics are determined effective surface charge and surface states density, corresponding to different layer thicknesses.Main results are reduced to the facts during layers growing despite of anodizing current density comes their sealing, the profile of fluorine atoms distribution shifts towards InAs, positive effective surface charge gradually decreases from 3.6 · 1011 to 2.0 · 1011 cm−2 at surface states density in (6—7) · 1011 eV·cm−2 range for all cases. Based on comparison of these data and theoretical concepts of MIS structure charge construction, there was made a conclusion about gradual built−in charge distancing from the border with InAs in the process of growing anodic oxide layer, which explains observed effective surface charge decrease during layer thickness increasing. This results indicates that the layer growth rate exceeds the built−in charge displacement rate towards InAs.

Highlights

  • Anodic oxidation was performed in alkaline electrolyte with fluorochemical additive component in galvanostatic mode at anode current densities 0.05 or 0.5 mA·cm−2

  • The layer thickness and refractive index was measured by ellipsometric method, and distribution of fluorine atoms through thickness — by photoelectron−spectroscopy method, combined with ion etching

  • Main results are reduced to the facts during layers growing despite of anodizing current density comes their sealing, the profile of fluorine atoms distribution shifts towards InAs, positive effective surface charge gradually decreases from 3.6 · 1011 to 2.0 · 1011 cm−2 at surface states density in (6—7) · 1011 eV·cm−2 range for all cases

Read more

Summary

ФИЗИЧЕСКИЕ СВОЙСТВА И МЕТОДЫ ИССЛЕДОВАНИЙ

О природе изменения эффективного поверхностного заряда на кристаллах InAs при выращивании анодного оксидного слоя. Изучена динамика изменения распределения атомов фтора по толщине выращенных слоев анодного оксида и эффективного поверхностного заряда на кристаллах InAs под такими слоями. Параллельно на основе выращенных слоев изготовлены МДП−структуры, из расчета вольт−фарадных характеристик которых определены значения эффективного поверхностного заряда и плотности поверхностных состояний, соответствующие различным толщинам слоя. Как процессы формирования состава АОС и накопления фтора у границы отражаются на значению эффективного поверхностного заряда и его трансформации в процессе роста АОС. Работа посвящена изучению динамики изменения распределения атомов фтора по толщине слоев анодного оксида в процессе их выращивания и эффективного поверхностного заряда на кристаллах InAs под такими слоями. Результаты этих исследований должны способствовать выяснению природы изменений значений Qsesff при росте АОС и могут оказаться полезными для разработчиков приборов на InAs при выборе толщины и режима выращивания АОС с заданными требованиями к границе InAs—АОС

Образцы и методы исследований
Результаты и их обсуждение
Библиографический список

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.