Abstract

The biological effect of soilborne nanoparticles (NPs) is a manifestation of soil-NMs-bio interactions. Soil factors are known to restructure NPs surfaces and thus influence the nanotoxicity. However, the mechanisms by which environmental factors affecting nano-bio interactions to aggravate or alleviate nanotoxicities are poorly understood. Herein, we compared the toxicity of TiO2 NPs (nTiO2) in five soils using the model nematode (Caenorhabditis elegans), and investigated the variation of nano-bio interactions under different conditions. A correlation analysis showed that pH and dissolved organic matter (DOM) were dominant regulators of nTiO2 toxicity. At the nano-bio interface, low pH (5.0) led to nTiO2 adhesion to micron-sized furrows and aggravated dermal wrinkling, while humid acid (HA) alleviated these impacts. Mechanically, low pH increased nTiO2 adhesion through enhanced electrostatic attraction and subsequent stimulation of mucin and collagen synthesis, resulting in a positive feed cycle of pH-dependent contact nanotoxicity. HA not only prevented nTiO2 adhesion onto the epidermis due to its negative charge, but also relieved the overstimulation of stress response pathways, thereby alleviating nanotoxicity. These findings broaden our knowledge of how NPs induce contact toxicity in soil invertebrates through specific biointerfacial interactions, and highlight the important role of DOM in alleviating the combined hazards of NPs and soil acidification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call