Abstract

Engineered nanomaterials (ENMs) have been developed for imaging, drug delivery, diagnosis, and clinical therapeutic purposes because of their outstanding physicochemical characteristics. However, the function and ultimate efficiency of nanomedicines remain unsatisfactory for clinical application, mainly because of our insufficient understanding of nanomaterial/nanomedicine-biology (nano-bio) interactions. The nonequilibrated, complex, and heterogeneous nature of the biological milieu inevitably influences the dynamic bioidentity of nanoformulations at each site (i.e., the interfaces at different biological fluids (biofluids), environments, or biological structures) of nano-bio interactions. The continuous interplay between a nanomedicine and the biological molecules and structures in the biological environments can, for example, affect cellular uptake or completely alter the designed function of the nanomedicine. Accordingly, the weak and strong driving forces at the nano-bio interface may elicit structural reconformation, decrease bioactivity, and induce dysfunction of the nanomaterial and/or redox reactions with biological molecules, all of which may elicit unintended and unexpected biological outcomes. In contrast, these driving forces also can be manipulated to mitigate the toxicity of ENMs or improve the targeting abilities of ENMs. Therefore, a comprehensive understanding of the underlying mechanisms of nano-bio interactions is paramount for the intelligent design of safe and effective nanomedicines. In this Account, we summarize our recent progress in probing the nano-bio interaction of nanomedicines, focusing on the driving force and redox reaction at the nano-bio interface, which have been recognized as the main factors that regulate the functions and toxicities of nanomedicines. First, we provide insight into the driving force that shapes the boundary of different nano-bio interfaces (including proteins, cell membranes, and biofluids), for instance, hydrophobic, electrostatic, hydrogen bond, molecular recognition, metal-coordinate, and stereoselective interactions that influence the different nano-bio interactions at each contact site in the biological environment. The physicochemical properties of both the nanoparticle and the biomolecule are varied, causing structure recombination, dysfunction, and bioactivity loss of proteins; correspondingly, the surface properties, biological functions, intracellular uptake pathways, and fate of ENMs are also influenced. Second, with the help of these driving forces, four kinds of redox interactions with reactive oxygen species (ROS), antioxidant, sorbate, and the prosthetic group of oxidoreductases are utilized to regulate the intracellular redox equilibrium and construct synergetic nanomedicines for combating bacteria and cancers. Three kinds of electron-transfer mechanisms are involved in designing nanomedicines, including direct electron injection, sorbate-mediated, and irradiation-induced processes. Finally, we discuss the factors that influence the nano-bio interactions and propose corresponding strategies to manipulate the nano-bio interactions for advancing nanomedicine design. We expect our efforts in understanding the nano-bio interaction and the future development of this field will bring nanomedicine to human use more quickly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call